Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[(1,3-benzothiazol-2-ylsulfanyl)acetato-κO]bis(imidazole-κN³)copper(II)

He-Dong Bian, Fu-Ping Huang, Qing Yu and Hong Liang*

College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China Correspondence e-mail: huangfp2006@163.com

Received 11 October 2007; accepted 18 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.031; wR factor = 0.089; data-to-parameter ratio = 12.6.

In the title complex, $[Cu(C_9H_6NO_2S_2)_2(C_3H_4N_2)_2]$, the Cu^{II} atom, lying on an inversion centre, is coordinated by two O atoms and two N atoms in a geometry deviating slightly from square planar. Intermolecular hydrogen bonds link the complex molecules into a layer structure.

Related literature

For related literature, see: Tamura *et al.* (1987); Raptopoulu *et al.* (1998); Battaglia *et al.* (1983); Houser & Cheng (2005); Ying *et al.* (2004); Noro *et al.* (2005); Dobrzynska *et al.* (2002); Xu *et al.* (2005).

Experimental

Crystal data

$$\begin{split} & \left[\text{Cu}(\text{C}_9\text{H}_6\text{NO}_2\text{S}_2)_2(\text{C}_3\text{H}_4\text{N}_2)_2 \right] \\ & M_r = 648.24 \\ & \text{Monoclinic, } P2_1/c \\ & a = 10.086 \text{ (3) Å} \\ & b = 12.050 \text{ (3) Å} \\ & c = 10.521 \text{ (3) Å} \\ & \beta = 91.281 \text{ (3)}^\circ \end{split}$$

 $V = 1278.4 \text{ (6) } \text{\AA}^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.23 \text{ mm}^{-1}$ T = 298 (2) K $0.31 \times 0.23 \times 0.15 \text{ mm}$

metal-organic compounds

 $R_{\rm int} = 0.026$

6476 measured reflections

2250 independent reflections

1768 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD

```
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
T_{\rm min} = 0.702, T_{\rm max} = 0.837
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	178 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.43 \text{ e } \text{\AA}^{-3}$
2250 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-N2	1.970 (2)	Cu1-O1	1.9961 (19)
$N2^{i}-Cu1-N2$	180	$N2-Cu1-O1^{i}$	89.70 (9)
N2 ⁱ -Cu1-O1 ⁱ	90.30 (9)	O1 ⁱ -Cu1-O1	180

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the Science Foundation of Guangxi, the Youth Science Foundation of Guangxi and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2156).

References

- Battaglia, L. P., Corradi, A., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 1902–1906.
- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dobrzynska, D., Duczmal, M., Jezierska, J. & Jerzylkiewicz, L. B. (2002). Polyhedron, 21, 2381–2385.
- Houser, R. P. & Cheng, D. (2005). Acta Cryst. E61, m1649-m1651.
- Noro, S., Kitagawa, S. & Wada, T. (2005). Inorg. Chim. Acta, 358, 423-428.
- Raptopoulu, C. P., Paschalidou, S., Pantazaki, A. A., Terzis, A., Perlepes, S. P., Lialiaris, T., Bakalbassis, E. J., Mroziński, J. & Kyriakidis, D. A. (1998). J. Inorg. Biochem. 71, 15–23.
- Tamura, H., Imai, H., Kuwahara, J. & Sugiura, Y. (1987). J. Am. Chem. Soc. 109, 6870–6871.
- Xu, T.-G., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m622-m624.
- Ying, E.-B., Zheng, Y.-Q. & Zhang, H.-J. (2004). J. Mol. Struct. 693, 73-80.

supplementary materials

Acta Cryst. (2007). E63, m2821 [doi:10.1107/S1600536807051586]

Bis[(1,3-benzothiazol-2-ylsulfanyl)acetato- κO]bis(imidazole- κN^3)copper(II)

H.-D. Bian, F.-P. Huang, Q. Yu and H. Liang

Comment

The recognition of strong antitumor activity of the *trans*-bis(acetato)bis(imidazole)copper(II) complex caused a growing interest in the synthesis and characterization of new compounds of this type (Tamura *et al.*, 1987; Raptopoulu *et al.*, 1998). We report here the synthesis and crystal stucture of a new copper(II) complex $[Cu(bttaa)_2(Him)_2]$ (where bttaa = 2-ben-zothiazolylthioacetate and Him = imidazole).

In the title complex, the Cu^{II} atom lying on an inversion centre, is coordinated by two imidazole nitrogen atoms and two carboxylate oxygen atoms. The Cu1 \cdots O2 separation of 2.767 Å indicates a weak interaction. Therefore, the title compound can be regarded as a pseudo-six-coordinate complex. This geometry around copper is typical of complexes of Cu^{II} with carboxylates and aromatic amines or imidazole (Battaglia *et al.*, 1983; Houser *et al.*, 2005; Ying *et al.*, 2004; Noro *et al.*, 2005). The length of Cu-O1 is in the normal range for a carboxylate group coordinated to copper in monodentate mode, and the Cu-N2 distance of 1.970 Å is similar to those observed for imidazole coordinated to copper(II) (Dobrzynska *et al.*, 2002; Xu *et al.*, 2005).

The supramolecular architecture is stabilized by an extensive 2-D network of intermolecular hydrogen bonds (N—H···O) involving imidazole N3 and bttaa O1 atoms.

Experimental

2-Benzothiazolylthioacetic acid (0.225 g, 1 mmol) and potassium hydroxide (0.06 g, 1 mmol) dissolved in water (10 ml) were added to a 1:1 methanol– water (10 ml) solution of $CuCl_2 \cdot 2H_2O$ (0.5 mmol). To this mixture was added a solution of imidazole (0.5 mmol) in methanol (4 ml). The blue solution was set aside for one week for the growth of blue block-shapped crystals.

Refinement

H atoms on C and N atoms were positoned geometrically and refined using a riding model (C—H = 0.93 Å for C—H_{aromatic}, C—H = 0.97 Å for C—H_{aliphatic} and N—H = 0.86 Å) with $U_{iso}(H) = 1.2U_{eq}(C,N)$

Figures

Fig. 1. The molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms). Atoms with the suffix A are generated by the symmetry operation (-x + 1, -y + 2, -z).

Fig. 2. The 2-D network structure of compound (I) (methylene H atoms are omitted for clarity). Hydrogen bonds are shown as dashed lines.

Bis[(1,3-benzothiazol-2-ylsulfanyl)acetato- κO]bis(imidazole- κN^3)copper(II)

Crystal data	
$[Cu(C_9H_6NO_2S_2)_2(C_3H_4N_2)_2]$	$F_{000} = 662$
$M_r = 648.24$	$D_{\rm x} = 1.684 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
a = 10.086 (3) Å	Cell parameters from 2567 reflections
b = 12.050 (3) Å	$\theta = 2.6 - 27.6^{\circ}$
c = 10.521 (3) Å	$\mu = 1.23 \text{ mm}^{-1}$
$\beta = 91.281 \ (3)^{\circ}$	T = 298 (2) K
V = 1278.4 (6) Å ³	Block, blue
Z = 2	$0.31 \times 0.23 \times 0.15 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer	2250 independent reflections
Radiation source: fine-focus sealed tube	1768 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -9 \rightarrow 11$
$T_{\min} = 0.702, \ T_{\max} = 0.837$	$k = -12 \rightarrow 14$
6476 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 0.8447P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{max} < 0.001$
2250 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
178 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.5000	1.0000	0.0000	0.02612 (16)
N1	0.1790 (2)	1.1037 (2)	0.4327 (2)	0.0350 (6)
N2	0.5031 (2)	0.9149 (2)	0.1598 (2)	0.0306 (6)
N3	0.5472 (3)	0.7866 (2)	0.3026 (3)	0.0429 (7)
H3	0.5779	0.7268	0.3370	0.052*
01	0.35753 (19)	1.09765 (16)	0.06651 (17)	0.0297 (5)
02	0.2287 (2)	0.97582 (18)	-0.0341 (2)	0.0438 (6)
S1	0.09591 (8)	0.95164 (7)	0.27425 (7)	0.0356 (2)
S2	0.12226 (8)	1.19910 (6)	0.21074 (7)	0.0355 (2)
C1	0.2436 (3)	1.0601 (2)	0.0281 (3)	0.0291 (6)
C2	0.1223 (3)	1.1293 (3)	0.0589 (3)	0.0340 (7)
H2A	0.0453	1.0811	0.0541	0.041*
H2B	0.1110	1.1850	-0.0071	0.041*
C3	0.1361 (3)	1.0878 (2)	0.3167 (3)	0.0312 (7)
C4	0.1860 (3)	1.0024 (3)	0.4970 (3)	0.0325 (7)
C5	0.1485 (3)	0.9090 (3)	0.4248 (3)	0.0310 (7)
C6	0.1636 (3)	0.8019 (3)	0.4724 (3)	0.0380 (8)
H6	0.1410	0.7404	0.4232	0.046*
C7	0.2133 (3)	0.7898 (3)	0.5949 (3)	0.0445 (8)
H7	0.2260	0.7190	0.6282	0.053*
C8	0.2446 (3)	0.8817 (3)	0.6688 (3)	0.0468 (9)
H8	0.2750	0.8714	0.7520	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C9	0.2317 (3)	0.9881 (3)	0.6217 (3)	0.0415 (8)
H9	0.2532	1.0491	0.6723	0.050*
C10	0.5633 (3)	0.8185 (3)	0.1828 (3)	0.0369 (7)
H10	0.6104	0.7787	0.1230	0.044*
C11	0.4737 (3)	0.8653 (3)	0.3607 (3)	0.0485 (9)
H11	0.4470	0.8649	0.4447	0.058*
C12	0.4469 (3)	0.9442 (3)	0.2732 (3)	0.0423 (8)
H12	0.3981	1.0084	0.2871	0.051*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0296 (3)	0.0238 (3)	0.0250 (3)	0.0048 (2)	0.0015 (2)	0.0009 (2)
N1	0.0394 (15)	0.0286 (14)	0.0373 (14)	0.0021 (11)	0.0031 (12)	-0.0042 (12)
N2	0.0298 (13)	0.0320 (14)	0.0301 (13)	0.0031 (11)	0.0013 (10)	0.0070 (11)
N3	0.0392 (16)	0.0440 (17)	0.0456 (16)	0.0033 (13)	0.0004 (13)	0.0229 (13)
01	0.0316 (11)	0.0277 (11)	0.0298 (10)	0.0058 (9)	0.0004 (8)	-0.0015 (9)
O2	0.0503 (14)	0.0364 (13)	0.0447 (13)	-0.0035 (10)	0.0046 (11)	-0.0134 (10)
S1	0.0399 (5)	0.0299 (4)	0.0368 (4)	-0.0038 (3)	-0.0006 (3)	-0.0031 (3)
S2	0.0383 (4)	0.0258 (4)	0.0425 (5)	0.0060 (3)	0.0045 (3)	-0.0019 (3)
C1	0.0355 (17)	0.0263 (16)	0.0255 (14)	0.0018 (13)	0.0007 (13)	0.0054 (13)
C2	0.0333 (17)	0.0340 (18)	0.0347 (16)	0.0013 (13)	-0.0022 (13)	0.0009 (14)
C3	0.0278 (15)	0.0257 (16)	0.0404 (17)	0.0051 (12)	0.0096 (13)	-0.0008 (13)
C4	0.0288 (16)	0.0344 (17)	0.0346 (16)	0.0014 (13)	0.0070 (13)	-0.0023 (14)
C5	0.0253 (15)	0.0356 (17)	0.0324 (16)	-0.0024 (12)	0.0059 (12)	-0.0019 (13)
C6	0.0373 (18)	0.0326 (18)	0.0445 (19)	-0.0076 (14)	0.0066 (15)	0.0010 (15)
C7	0.044 (2)	0.040 (2)	0.049 (2)	-0.0029 (15)	0.0113 (16)	0.0151 (16)
C8	0.049 (2)	0.059 (2)	0.0330 (17)	-0.0030 (17)	0.0013 (15)	0.0056 (17)
C9	0.044 (2)	0.045 (2)	0.0355 (18)	-0.0025 (15)	0.0017 (14)	-0.0065 (15)
C10	0.0378 (18)	0.0353 (18)	0.0375 (17)	0.0039 (14)	0.0007 (14)	0.0069 (14)
C11	0.0365 (18)	0.071 (3)	0.0383 (18)	0.0105 (17)	0.0098 (15)	0.0213 (18)
C12	0.0363 (18)	0.051 (2)	0.0395 (18)	0.0130 (15)	0.0093 (14)	0.0111 (16)

Geometric parameters (Å, °)

Cu1—N2 ⁱ	1.970 (2)	C1—C2	1.521 (4)
Cu1—N2	1.970 (2)	C2—H2A	0.970
Cu1—O1 ⁱ	1.9961 (19)	C2—H2B	0.970
Cu1—O1	1.9961 (19)	C4—C9	1.391 (4)
N1—C3	1.300 (4)	C4—C5	1.404 (4)
N1—C4	1.397 (4)	C5—C6	1.392 (4)
N2—C10	1.330 (4)	C6—C7	1.380 (4)
N2—C12	1.378 (4)	С6—Н6	0.930
N3—C10	1.332 (4)	С7—С8	1.385 (5)
N3—C11	1.358 (4)	С7—Н7	0.930
N3—H3	0.860	C8—C9	1.380 (5)
O1—C1	1.291 (3)	С8—Н8	0.930
O2—C1	1.216 (3)	С9—Н9	0.930

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-C12 1.346 (4) $C11-H11$ 0.930 $C12-H12$ 0.930 $C9-C4-C5$ 119.4 (3) $N1-C4-C5$ 115.3 (3) $C6-C5-C4$ 121.5 (3) $C6-C5-S1$ 129.1 (2) $C4-C5-S1$ 109.3 (2) $C7-C6-C5-S1$ 121.0 $C5-C6-H6$ 121.0 $C5-C6-H6$ 121.0 $C6-C7-C8$ 120.9 (3) $C6-C7-H7$ 119.6 $C9-C8-C7$ 121.5 (3) $C9-C8-C4$ 118.7 (3) $C8-C9-C4$ 118.7 (3) $C8-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $C12-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $N3-C10-H11$ 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—H11 0.930 $C12$ —H12 0.930 $C9$ —C4—N1 $125.2 (3)$ $C9$ —C4—C5 $119.4 (3)$ $N1$ —C4—C5 $115.3 (3)$ $C6$ —C5—C4 $121.5 (3)$ $C6$ —C5—C4 $121.5 (3)$ $C6$ —C5—S1 $129.1 (2)$ $C4$ —C5—S1 $109.3 (2)$ $C7$ —C6—C5 $117.9 (3)$ $C7$ —C6—H6 121.0 $C5$ —C6—H6 121.0 $C6$ —C7—C8 $120.9 (3)$ $C6$ —C7—H7 119.6 $C8$ —C7—H7 119.6 $C9$ —C8—C7 $121.5 (3)$ $C9$ —C8—H8 119.2 $C7$ —C8—H8 119.2 $C7$ —C8—H8 119.2 $C8$ —C9—C4 $118.7 (3)$ $C8$ —C9—H9 120.7 $C4$ —C9—H9 120.7 $N2$ —C10—N3 $111.0 (3)$ $N2$ —C10—H10 124.5 $C12$ —C11—H11 126.6 $N3$ —C11—H11 126.6 $C1$ —C12—N2 $109.3 (3)$ $C1$ —C12—H12 125.3 $C3$ —N1—C4—C5 $0.8 (4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12— $H12$ 0.930 $C9$ — $C4$ — $C5$ 119.4 (3) $N1$ — $C4$ — $C5$ 115.3 (3) $C6$ — $C5$ — $C4$ 121.5 (3) $C6$ — $C5$ — $C4$ 121.5 (3) $C6$ — $C5$ — $C4$ 121.5 (3) $C6$ — $C5$ — $S1$ 129.1 (2) $C4$ — $C5$ — $S1$ 109.3 (2) $C7$ — $C6$ — $C5$ 117.9 (3) $C7$ — $C6$ — $H6$ 121.0 $C5$ — $C6$ — $H6$ 121.0 $C5$ — $C6$ — $H6$ 121.0 $C5$ — $C6$ — $H6$ 121.0 $C6$ — $C7$ — $C8$ 120.9 (3) $C6$ — $C7$ — $C8$ 120.9 (3) $C6$ — $C7$ — $H7$ 119.6 $C9$ — $C8$ — $C7$ 121.5 (3) $C9$ — $C8$ — $C7$ 121.5 (3) $C9$ — $C8$ — $H8$ 119.2 $C7$ — $C8$ — $H8$ 119.2 $C8$ — $C9$ — $H9$ 120.7 $C4$ — $C9$ — $H9$ 120.7 $N2$ — $C10$ — $H10$ 124.5 $N3$ — $C10$ — $H10$ 124.5 $N3$ — $C10$ — $H10$ 124.5 $N3$ — $C10$ — $H11$ 126.6 $N3$ — $C11$ — $H11$ 126.6 $N3$ — $C11$ — $H12$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C4-N1 125.2 (3) $C9-C4-C5$ 119.4 (3) $N1-C4-C5$ 115.3 (3) $C6-C5-C4$ 121.5 (3) $C6-C5-S1$ 129.1 (2) $C4-C5-S1$ 109.3 (2) $C7-C6-C5$ 117.9 (3) $C7-C6-H6$ 121.0 $C6-C7-C8$ 120.9 (3) $C6-C7-H7$ 119.6 $C9-C8-C7$ 121.5 (3) $C9-C8-C7$ 121.5 (3) $C9-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H9$ 120.7 $N2-C10-N3$ 111.0 (3) $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-N3$ 106.8 (3) $C12-C11-H11$ 126.6 $N3-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $N3-C10-H11$ 126.6 $N3-C11-H11$ 126.6<
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C4-C5 $119.4 (3)$ N1C4C5 $115.3 (3)$ C6C5C4 $121.5 (3)$ C6C5S1 $129.1 (2)$ C4C5S1 $109.3 (2)$ C7C6C5 $117.9 (3)$ C7C6H6 121.0 C5C6H6 121.0 C6C7C8 $120.9 (3)$ C6C7H7 119.6 C8C7H7 119.6 C9C8C7 $121.5 (3)$ C9C8H8 119.2 C7C8H8 119.2 C7C8H8 119.2 C7C8H8 119.2 C7C8H9 120.7 C4C9H9 120.7 N2C10N3 $111.0 (3)$ N2C10H10 124.5 N3C10H10 124.5 C12C11N3 $106.8 (3)$ C12C11H11 126.6 C11C12N2 $109.3 (3)$ C11C12N2 $109.3 (3)$ C1C12H12 125.3 N2C12H12 125.3 N2C12H12 125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C4—C5115.3 (3)C6—C5—C4121.5 (3)C6—C5—S1129.1 (2)C4—C5—S1109.3 (2)C7—C6—C5117.9 (3)C7—C6—H6121.0C5—C6—H6121.0C6—C7—C8120.9 (3)C6—C7—H7119.6C9—C8—C7121.5 (3)C9—C8—H8119.2C7—C6—H6121.7C8—C9—C4118.7 (3)C8—C9—H9120.7C4—C9—H9120.7N2—C10—N3111.0 (3)N2—C10—H10124.5N3—C10—H10124.5C12—C11—N3106.8 (3)C12—C11—H11126.6C11—C12—N2109.3 (3)C11—C12—H12125.3N2—C12—H12125.3C3—N1—C4—C50.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C5-C4 $121.5 (3)$ $C6-C5-S1$ $129.1 (2)$ $C4-C5-S1$ $109.3 (2)$ $C7-C6-C5$ $117.9 (3)$ $C7-C6-H6$ 121.0 $C5-C6-H6$ 121.0 $C6-C7-C8$ $120.9 (3)$ $C6-C7-H7$ 119.6 $C8-C7-H7$ 119.6 $C9-C8-C7$ $121.5 (3)$ $C9-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C8-C9-C4$ $118.7 (3)$ $C8-C9-H9$ 120.7 $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-N3$ $106.8 (3)$ $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $C1-C12-N2$ $109.3 (3)$ $C1-C12-H12$ 125.3 $N2-C12-H12$ 125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C5-S1 $129.1 (2)$ $C4-C5-S1$ $109.3 (2)$ $C7-C6-C5$ $117.9 (3)$ $C7-C6-H6$ 121.0 $C5-C6-H6$ 121.0 $C6-C7-C8$ $120.9 (3)$ $C6-C7-H7$ 119.6 $C8-C7-H7$ 119.6 $C9-C8-C7$ $121.5 (3)$ $C9-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C8-C9-C4$ $118.7 (3)$ $C8-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $N2-C10-N3$ $111.0 (3)$ $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-N3$ $106.8 (3)$ $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 125.3 $N2-C12-H12$ 125.3 $N2-C12-H12$ 125.3 $C3-N1-C4-C5$ $0.8 (4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C5-S1 $109.3 (2)$ $C7-C6-C5$ $117.9 (3)$ $C7-C6-H6$ 121.0 $C5-C6-H6$ 121.0 $C6-C7-C8$ $120.9 (3)$ $C6-C7-H7$ 119.6 $C9-C8-C7$ $121.5 (3)$ $C9-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C8-C9-C4$ $118.7 (3)$ $C8-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $N2-C10-N3$ $111.0 (3)$ $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 125.3 $N2-C12-H12$ 125.3 $N2-C12-H12$ 125.3 $N2-C12-H12$ 125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7C6C5 $117.9 (3)$ $C7C6H6$ 121.0 $C5C6H6$ 121.0 $C6C7C8$ $120.9 (3)$ $C6C7H7$ 119.6 $C9C8C7$ $121.5 (3)$ $C9C8H8$ 119.2 $C7C8H8$ 119.2 $C7C8H8$ 119.2 $C8C9C4$ $118.7 (3)$ $C8C9H9$ 120.7 $C4C9H9$ 120.7 $C4C9H9$ 120.7 $N2C10N3$ $111.0 (3)$ $N2C10H10$ 124.5 $N3C10H10$ 124.5 $C12C11N3$ $106.8 (3)$ $C12C11H11$ 126.6 $N3C11H11$ 126.6 $N3C11H11$ 126.6 $N3C11H11$ 125.3 $N2C12H12$ 125.3 $N2C12H12$ 125.3 $N2C12H12$ 125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7-C8 $120.9 (3)$ $C6-C7-H7$ 119.6 $C8-C7-H7$ 119.6 $C9-C8-C7$ $121.5 (3)$ $C9-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C8-C9-C4$ $118.7 (3)$ $C8-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $N2-C10-N3$ $111.0 (3)$ $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 125.3 $N2-C12-H12$ 125.3 $N2-C12-H12$ 125.3 $N2-C12-H12$ 125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7-H7119.6 $C8-C7-H7$ 119.6 $C9-C8-C7$ 121.5 (3) $C9-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C8-C9-C4$ 118.7 (3) $C8-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $N2-C10-N3$ 111.0 (3) $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $C11-C12-N2$ 109.3 (3) $C11-C12-H12$ 125.3 $N2-C12-H12$ 125.3 $N2-C12-H12$ 125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C7-H7 119.6 $C9-C8-C7$ 121.5 (3) $C9-C8-H8$ 119.2 $C7-C8-H8$ 119.2 $C8-C9-C4$ 118.7 (3) $C8-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $N2-C10-N3$ 111.0 (3) $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $N3-C11-H11$ 126.3 $C11-C12-N2$ 109.3 (3) $C11-C12-H12$ 125.3 $N2-C12-H12$ 125.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—C7121.5 (3)C9—C8—H8119.2C7—C8—H8119.2C8—C9—C4118.7 (3)C8—C9—H9120.7C4—C9—H9120.7N2—C10—N3111.0 (3)N2—C10—H10124.5N3—C10—H10124.5C12—C11—N3106.8 (3)C12—C11—H11126.6N3—C11—H11126.6C11—C12—N2109.3 (3)C11—C12—H12125.3N2—C12—H12125.3C3—N1—C4—C50.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9—C8—H8119.2C7—C8—H8119.2C8—C9—C4118.7 (3)C8—C9—H9120.7C4—C9—H9120.7N2—C10—N3111.0 (3)N2—C10—H10124.5N3—C10—H10124.5C12—C11—N3106.8 (3)C12—C11—H11126.6N3—C11—H11126.6C11—C12—N2109.3 (3)C11—C12—H12125.3N2—C12—H12125.3C3—N1—C4—C50.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7C8H8119.2 $C8C9C4$ 118.7 (3) $C8C9H9$ 120.7 $C4C9H9$ 120.7 $N2C10N3$ 111.0 (3) $N2C10H10$ 124.5 $N3C10H10$ 124.5 $C12C11N3$ 106.8 (3) $C12C11H11$ 126.6 $N3C10H10$ 124.5 $C12C11H11$ 126.6 $N3C11H11$ 126.6 $C11C12N2$ 109.3 (3) $C11C12H12$ 125.3 $N2C12H12$ 125.3 $C3N1C4C5$ 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C9-C4 118.7 (3) $C8-C9-H9$ 120.7 $C4-C9-H9$ 120.7 $N2-C10-N3$ 111.0 (3) $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-N3$ 106.8 (3) $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $C11-C12-N2$ 109.3 (3) $C11-C12-H12$ 125.3 $N2-C12-H12$ 125.3 $C3-N1-C4-C5$ 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C9-H9120.7 $C4-C9-H9$ 120.7 $N2-C10-N3$ 111.0 (3) $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-N3$ 106.8 (3) $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $C11-C12-N2$ 109.3 (3) $C11-C12-H12$ 125.3 $N2-C12-H12$ 125.3 $C3-N1-C4-C5$ 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C9-H9120.7 $N2-C10-N3$ 111.0 (3) $N2-C10-H10$ 124.5 $N3-C10-H10$ 124.5 $C12-C11-N3$ 106.8 (3) $C12-C11-H11$ 126.6 $N3-C11-H11$ 126.6 $C11-C12-N2$ 109.3 (3) $C11-C12-H12$ 125.3 $N2-C12-H12$ 125.3 $C3-N1-C4-C5$ 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C10—N3 111.0 (3) N2—C10—H10 124.5 N3—C10—H10 124.5 C12—C11—N3 106.8 (3) C12—C11—H11 126.6 N3—C11—H11 126.6 C11—C12—N2 109.3 (3) C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C10—H10 124.5 N3—C10—H10 124.5 C12—C11—N3 106.8 (3) C12—C11—H11 126.6 N3—C11—H11 126.6 C11—C12—N2 109.3 (3) C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C10—H10 124.5 C12—C11—N3 106.8 (3) C12—C11—H11 126.6 N3—C11—H11 126.6 C11—C12—N2 109.3 (3) C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—N3 106.8 (3) C12—C11—H11 126.6 N3—C11—H11 126.6 C11—C12—N2 109.3 (3) C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—H11 126.6 N3—C11—H11 126.6 C11—C12—N2 109.3 (3) C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C11—H11 126.6 C11—C12—N2 109.3 (3) C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
H2A-C2-H2B107.2C11-C12-N2109.3N1-C3-S1116.7 (2)C11-C12-H12125.3N1-C3-S2120.4 (2)N2-C12-H12125.3S1-C3-S2122.89 (18) N^2 -Cu1-N2-C1035 (100)C3-N1-C4-C50.8 (4)O1^i-Cu1-N2-C10-11.8 (3)C9-C4-C5-C6-4.0 (0)O1-Cu1-N2-C10168.2 (3)N1-C4-C5-C6173.3N2^i-Cu1-N2-C12-148 (100)C9-C4-C5-S1179.9O1^i-Cu1-N2-C12165.9 (3)N1-C4-C5-S1-2.8 (0)O1-Cu1-N2-C12-14.1 (3)C3-S1-C5-C6-172.2	C11—C12—N2 109.3 (3) C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C12—H12 125.3 N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C12—H12 125.3 C3—N1—C4—C5 0.8 (4)
$S1-C3-S2$ $122.89 (18)$ $N2^{i}-Cu1-N2-C10$ $35 (100)$ $C3-N1-C4-C5$ $0.8 (4)$ $O1^{i}-Cu1-N2-C10$ $-11.8 (3)$ $C9-C4-C5-C6$ $-4.0 (10)$ $O1-Cu1-N2-C10$ $168.2 (3)$ $N1-C4-C5-C6$ 173.3 $N2^{i}-Cu1-N2-C12$ $-148 (100)$ $C9-C4-C5-S1$ 179.9 $O1^{i}-Cu1-N2-C12$ $165.9 (3)$ $N1-C4-C5-S1$ $-2.8 (10)$ $O1-Cu1-N2-C12$ $-14.1 (3)$ $C3-S1-C5-C6$ -172.5	C3—N1—C4—C5 0.8 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—N1—C4—C5 0.8 (4)
$O1^{i}$ —Cu1—N2—C10-11.8 (3)C9—C4—C5—C6-4.0 ($O1$ —Cu1—N2—C10168.2 (3)N1—C4—C5—C6173.3 $N2^{i}$ —Cu1—N2—C12-148 (100)C9—C4—C5—S1179.9 $O1^{i}$ —Cu1—N2—C12165.9 (3)N1—C4—C5—S1-2.8 ($O1$ —Cu1—N2—C12-14.1 (3)C3—S1—C5—C6-172.7	
$O1-Cu1-N2-C10$ 168.2 (3) $N1-C4-C5-C6$ 173.3 $N2^{i}-Cu1-N2-C12$ -148 (100)C9-C4-C5-S1179.9 $O1^{i}-Cu1-N2-C12$ 165.9 (3) $N1-C4-C5-S1$ -2.8 ($O1-Cu1-N2-C12$ -14.1 (3)C3-S1-C5-C6-172.7	C9-C4-C5-C6 -4.0 (4)
$N2^{i}$ —Cu1—N2—C12-148 (100)C9—C4—C5—S1179.9 $O1^{i}$ —Cu1—N2—C12165.9 (3)N1—C4—C5—S1-2.8 ($O1$ —Cu1—N2—C12-14.1 (3)C3—S1—C5—C6-172.7	N1—C4—C5—C6 173.3 (3)
$O1^{i}$ —Cu1—N2—C12165.9 (3)N1—C4—C5—S1-2.8 ($O1$ —Cu1—N2—C12-14.1 (3)C3—S1—C5—C6-172.7	C9—C4—C5—S1 179.9 (2)
O1—Cu1—N2—C12 -14.1 (3) C3—S1—C5—C6 -172.	N1—C4—C5—S1 -2.8 (3)
	C3—S1—C5—C6 –172.7 (3)
$N2^{i}$ —Cu1—O1—C1 85.13 (18) C3—S1—C5—C4 2.9 (2	C3—S1—C5—C4 2.9 (2)
N2—Cu1—O1—C1 -94.87 (18) C4—C5—C6—C7 1.9 (4	C4—C5—C6—C7 1.9 (4)
O1 ⁱ —Cu1—O1—C1 -55 (100) S1—C5—C6—C7 177.0	S1—C5—C6—C7 177.0 (2)
Cu1—O1—C1—O2 2.9 (3) C5—C6—C7—C8 1.3 (5	C5—C6—C7—C8 1.3 (5)
Cu1—O1—C1—C2 -174.60 (19) C6—C7—C8—C9 -2.3 (C6—C7—C8—C9 –2.3 (5)
O2-C1-C2-S2 145.5 (2) C7-C8-C9-C4 0.1 (5	C7—C8—C9—C4 0.1 (5)
01-C1-C2-S2 $-369(3)$ $N1-C4-C9-C8$ -174	
	N1C4C9C8174.0 (3)

supplementary materials

G4 NI1 G2 G1	1 ((2)			0.0 (1)
C4-N1-C3-S1	1.6 (3)	C12—N2—C10—N3		0.3 (4)
C4—N1—C3—S2	-177.7 (2)	Cu1—N2—C10—N3		178.4 (2)
C5—S1—C3—N1	-2.8 (2)	C11—N3—C10—N2		-0.1 (4)
C5—S1—C3—S2	176.57 (19)	C10—N3—C11—C12		-0.1 (4)
C2—S2—C3—N1	159.1 (2)	N3-C11-C12-N2		0.3 (4)
C2—S2—C3—S1	-20.2 (2)	C10-N2-C12-C11		-0.3 (4)
C3—N1—C4—C9	177.9 (3)	Cu1—N2—C12—C11		-178.4 (2)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N3—H3····O1 ⁱⁱ	0.86	1.96	2.819	174
Symmetry codes: (ii) $-x+1$, $y-1/2$, $-z+1$	/2.			

Fig. 1

